Passive Suppression of Aeroelastic Instabilities of In-flowwings by Targeted Energy Transfers to Lightweight Essentially Nonlinear Attachments

نویسندگان

  • Young S. Lee
  • Alexander F. Vakakis
  • Lawrence A. Bergman
  • D. Michael McFarland
  • Gaëtan Kerschen
چکیده

Abstract. Theoretical and experimental suppression of aeroelastic instabilities by means of broadband passive targeted energy transfers has been recently studied. A single-degree-offreedom (SDOF) nonlinear energy sink (NES) was coupled to a 2-DOF rigid wing modeled in the low-speed, subsonic regime with quasi-steady aerodynamic theory. The nonlinear attachment was designed and optimized to suppress the critical nonlinear modal energy exchanges between the flow and the (pitch and heave) wing modes, thus suppressing the (transient) triggering mechanism of aeroelastic instability. We performed bifurcation analysis to find regions of robust passive aeroelastic suppression in parameter space. Then, we employed multi-degreeof-freedom nonlinear energy sinks (MDOF NESs) to improve robustness of the aeroelastic instability suppression. Bifurcation analysis by a numerical continuation technique demonstrated that controlling the occurrence of a limit point cycle (LPC or saddle-node) bifurcation point above a Hopf bifurcation point is crucial to enhancing suppression robustness. MDOF NESs not only can enhance robustness of suppression against even strong gust-like disturbances, but they require lower NES mass compared to SDOF NES designs. The validity of the theoretical findings was proven by a series of wind tunnel experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1:Theory

We study passive and nonlinear targeted energy transfers induced by resonant interactions between a singledegree-of-freedom nonlinear energy sink (NES) and a 2-DOF in-flow rigid wing model.We show that it is feasible to partially or even completely suppress aeroelastic instability by passively transferring vibration energy from thewing to the NES in a one-way irreversible fashion. Moreover, thi...

متن کامل

Optimal Nonlinear Energy Sinks in Vibration Mitigation of the Beams Traversed by Successive Moving Loads

Optimal Nonlinear Energy Sink (NES) is employed in vibration suppression of the beams subjected to successive moving loads in this paper. As a real application, a typical railway bridge is dynamically modeled by a single-span beam and a traveling high-speed train is simulated by a series of successive moving loads. Genetic algorithm is employed as the optimization technique and optimal paramete...

متن کامل

A minimization principle for the description of modes associated with finite-time instabilities.

We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime, they can play a crucial role either by altering the system dynamics through the activation of other instabilities or by creating sudden nonline...

متن کامل

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system ...

متن کامل

The Transient Dynamics of a Beam Mounted on Spring Supports and Equipped with the Nonlinear Energy Sink

The transient dynamics of a beam mounted on springer-damper support and equipped with a nonlinear energy sink (NES) is investigated under the effects of shock loads. The equations of motion are derived using the Hamilton’s principle leading to four hybrid ordinary and partial differential equations and descritized using the Galerkin method. An adaptive Newmark method is employed for accurate an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007